PAR ACTIVATING PEPTIDES

BACHEM

PIONEERING PARTNER FOR PEPTIDES
PAR-ACTIVATING PEPTIDES OFFERED BY BACHEM

Proteinase-activated receptors (PARs) are a class of G-protein-coupled receptors consisting of four known members (PAR-1 to PAR-4). PARs are coupled to multiple signal transduction pathways and are involved in various physiological and pathophysiological processes including platelet activation, arterial thrombosis, inflammation and tumor progression. Receptor signaling is initiated by enzymatic cleavage at a specific site within the extracellular N-terminal domain of PARs by a serine protease. Proteolysis results in exposure of a tethered ligand domain that interacts with the receptor resulting in activation. Short synthetic peptide sequences corresponding to the tethered ligand motif of the proteolytically generated new N-terminal region can also bind to and activate PARs. In this monograph, Bachem offers a range of PAR-activating peptides and analogs useful for studying receptor function.

Proteinase-Activated Receptors
Proteinase-activated receptors (PARs) belong to the family of seven transmembrane G-protein-coupled receptors. Activation of PARs is initiated by proteolytic cleavage at a specific site near the N-terminus resulting in the unmasking of a particular peptide sequence, known as the tethered ligand sequence. The proteolytically generated new N-terminal domain interacts with the receptor within the extracellular loop-2 and triggers signal transduction (Fig. 1A). Proteolysis is mediated by a variety of serine proteases, among them enzymes involved in coagulation and inflammation. Short five- to six-amino acid peptides, based on the proteolytically revealed N-terminal sequence, can also activate PARs without the unmasking of the tethered ligand motif (Fig. 1B). To date, four proteinase-activated receptors have been identified, designated as PAR-1 through PAR-4. They differ in their N-terminal cleavage site, tethered ligand sequence and pharmacological characteristics.

PAR-1
Human, mouse and hamster PAR-1 (formerly known as "thrombin receptor") were cloned in the early 1990’s. PAR-1 contains a thrombin cleavage site at position 41 and 42 in the N-terminal extracellular region.
followed by the tethered ligand sequence SFLLRN. C-terminal to this motif a cluster of negatively-charged amino acid residues is found. The sequence of this cluster shows homologies to a motif present in the leech anticoagulant protein hirudin and a number of other proteins that interact with the anion-binding exosite I of thrombin (Fig. 2).

PAR-2
PAR-2, which was cloned in 1995, lacks the cluster of negatively-charged amino acid residues within the N-terminal extracellular domain. PAR-2 can be activated by trypsin, but, in contrast to the other members of the PAR family, does not respond to thrombin. The human and mouse homologs, which share 83% overall identity, show differences in their tethered ligand sequences. Cleavage of human PAR-2 occurs between Arg34 and Ser35 and results in the unmasking of the N-terminal tethered sequence SLIGKV, whereas the mouse receptor is cleaved between Arg38 and Ser39 revealing the tethered ligand motif SLIGRL.

Chinese hamster ovary (CHO) cells transfected with human PAR-2 respond to both human PAR- (SLIGKV) and mouse PAR (SLIGRL)-activating peptides, and to the PAR-1-derived sequence SFLLRNP.

PAR-3
PAR-3 represents an additional thrombin receptor. Similar to PAR-1, a negatively-charged motif (FEEFP) is located distal to the thrombin cleavage site at Lys38 and Thr39. Synthetic ligands mimicking the putative tethered ligand sequence (TFRGAP and TFRGAPPNS) or the PAR-1- and PAR-2-activating peptides, SFLLRN and SLIGRL, respectively, showed little or no activity at PAR-3. In contrast to the human receptor, the murine PAR-3 did not signal upon exposure to thrombin when overexpressed in COS-7 cells.

PAR-4
The cloning of PAR-4 was based on the identification of PAR-like sequences in expressed sequence tag (EST) databases. Human PAR-4 consists of 385 amino acids and shares 33% sequence identity with PAR-1, PAR-2, and PAR-3. It contains a potential cleavage site for thrombin and trypsin between Arg47 and Gly48. The hexapeptide GYPGQV representing the tethered ligand sequence of this receptor was able to trigger signal transduction in COS-7 cells transiently transfected with human PAR-4.
Receptor Activation
Thrombin activates PAR-1 and PAR-3 by first binding via its anion-binding exosite to the negatively charged amino acid motifs (DKYEPF for PAR-1 and FEEFP for PAR-3) C-terminally to the cleavage site. Mutations within these sequences were shown to reduce the capacity of thrombin to activate PAR-1 and PAR-3. Furthermore, γ-thrombin, which lacks the anion-binding exosite, is about a 100 times less potent than α-thrombin in cleaving PAR-1 and PAR-3 at the activation site. PAR-4, which is devoid of a hirudin-like binding site for thrombin, can be activated equally well by α- and γ-thrombin. As activation by thrombin is shown to be approximately 50 times less than with PAR-1, PAR-4 is considered to be a low affinity receptor.

In certain cell types, various members of the PAR family are coexpressed. Human platelets, for example, express PAR-1 and PAR-4 which exhibit different potencies and kinetics of desensitization. PAR-1 activation is transient and occurs rapidly in response to low concentrations of thrombin whereas PAR-4 responds to high concentrations of thrombin but shows a sustained action. Coexpression of this dual receptor system may have important functions in platelet aggregation.

Mouse platelets express PAR-3 and PAR-4, but not PAR-1. In this cell type, PAR-3 appears to act as a cofactor for PAR-4. Evidence for this relationship came from the observations that coexpression of PAR-3 in COS cells increased the thrombin signaling to PAR-4 6-15 times and that coexpression of the transmembrane domain of CD8 linked to the N-terminus of PAR-3 with its cluster of negatively charged amino acids facilitated thrombin signaling via PAR-4. Thrombin cleavage may be promoted by the ability of PAR-3 to concentrate thrombin at the cell surface in the vicinity of PAR-4.

Non-receptor proteins with high affinity binding sites for thrombin may equally act as cofactors for
Fig. 2.
Human Proteinase-Activated Receptors

PAR-1 (human)

- SFLLRN
- PN
- DKYEPF
- KEQTIQVPGLNITTCHDVLENELLEGGYYA

PAR-2 (human)

- SLIGKV
- VKQTFIPALNITTCHDVLEQLLVGDMFN

PAR-3 (human)

- TFRGAP
- PNS
- FEEFP
- LKQELYLVQPITTCHDVHNTCESSSFQPL

PAR-4 (human)

- GYPGQV
- QRQTFRLARSFRVLCHDALPLDAQASHWQPAFTC

- Tethered Ligand
- Hirudin-like Sequence
- Extracellular Loop 2 Sequence
<table>
<thead>
<tr>
<th>Peptides</th>
<th>Product</th>
<th>Sequence</th>
<th>Prod. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR-1</td>
<td>PAR-1 (1-6) (mouse, rat)</td>
<td>SFFLRN</td>
<td>H-6416</td>
</tr>
<tr>
<td></td>
<td>(Phe¹, Ser², Tyr³)-PAR-1 (1-6) amide (human)</td>
<td>FSLLRY-NH₂</td>
<td>H-6286</td>
</tr>
<tr>
<td></td>
<td>H-Thr-Phe-Leu-Leu-Arg-NH₂</td>
<td>TFLLR-NH₂</td>
<td>H-5848</td>
</tr>
<tr>
<td></td>
<td>TRAP-5</td>
<td>SFLLR</td>
<td>H-1408</td>
</tr>
<tr>
<td></td>
<td>TRAP-5 amide</td>
<td>SFLLR-NH₂</td>
<td>H-2938</td>
</tr>
<tr>
<td></td>
<td>TRAP-6 ammonium acetate salt</td>
<td>SFLLRN</td>
<td>H-7764</td>
</tr>
<tr>
<td></td>
<td>TRAP-6 trifluoroacetate salt</td>
<td>SFLLRN</td>
<td>H-8365</td>
</tr>
<tr>
<td></td>
<td>TRAP-6 amide</td>
<td>SFLLRN-NH₂</td>
<td>H-2936</td>
</tr>
<tr>
<td></td>
<td>(DL-Isoser³)-TRAP-6</td>
<td>DL-Isoser-FLLRN</td>
<td>H-1944</td>
</tr>
<tr>
<td></td>
<td>(Phe¹, Ser²)-TRAP-6</td>
<td>FSLLRN</td>
<td>H-5996</td>
</tr>
<tr>
<td></td>
<td>TRAP-6 (2-6)</td>
<td>FLLRN</td>
<td>H-8325</td>
</tr>
<tr>
<td></td>
<td>TRAP-7</td>
<td>SFLLRN-P</td>
<td>H-2234</td>
</tr>
<tr>
<td></td>
<td>(Tyr³)-TRAP-7</td>
<td>YFLLRN</td>
<td>H-1674</td>
</tr>
<tr>
<td></td>
<td>TRAP-14</td>
<td>SFLLRN-PNDKYPF</td>
<td>H-8105</td>
</tr>
<tr>
<td></td>
<td>TRAP-14 amide</td>
<td>SFLLRN-PNDKYPF-NH₂</td>
<td>H-6032</td>
</tr>
<tr>
<td>PAR-2</td>
<td>H-Leu-Ser-Ile-Gly-Lys-Val-NH₂</td>
<td>LSIGKV-NH₂</td>
<td>H-6428</td>
</tr>
<tr>
<td></td>
<td>PAR-2 (1-6) (human)</td>
<td>SLIGKV</td>
<td>H-5042</td>
</tr>
<tr>
<td></td>
<td>PAR-2 (1-6) amide (human)</td>
<td>SLIGKV-NH₂</td>
<td>H-4624</td>
</tr>
<tr>
<td></td>
<td>PAR-2 (1-6) (mouse, rat)</td>
<td>SLIGRL</td>
<td>H-3586</td>
</tr>
<tr>
<td></td>
<td>PAR-2 (1-6) amide (mouse, rat)</td>
<td>SLIGRL-NH₂</td>
<td>H-5078</td>
</tr>
<tr>
<td></td>
<td>PAR-2 (6-1) amide (human)</td>
<td>VKGILS-NH₂</td>
<td>H-5882</td>
</tr>
<tr>
<td>PAR-3</td>
<td>PAR-3 (1-6) amide (mouse)</td>
<td>SFNGGP-NH₂</td>
<td>H-6282</td>
</tr>
<tr>
<td></td>
<td>PAR-3 (1-6) (human)</td>
<td>TFRGAP</td>
<td>H-4452</td>
</tr>
<tr>
<td></td>
<td>PAR-3 (1-6) amide (human)</td>
<td>TFRGAP-NH₂</td>
<td>H-6278</td>
</tr>
<tr>
<td>PAR-4</td>
<td>(Ala¹)-PAR-4 (1-6) (mouse)</td>
<td>AYPGKF</td>
<td>H-6134</td>
</tr>
<tr>
<td></td>
<td>(Ala¹)-PAR-4 (1-6) amide (mouse)</td>
<td>AYPGKF-NH₂</td>
<td>H-6046</td>
</tr>
<tr>
<td></td>
<td>PAR-4 (1-6) (mouse)</td>
<td>GYPGKF</td>
<td>H-4404</td>
</tr>
<tr>
<td></td>
<td>PAR-4 (1-6) amide (mouse)</td>
<td>GYPGKF-NH₂</td>
<td>H-6054</td>
</tr>
<tr>
<td></td>
<td>PAR-4 (1-6) (human)</td>
<td>GYPGQV</td>
<td>H-4348</td>
</tr>
<tr>
<td></td>
<td>PAR-4 (1-6) amide (human)</td>
<td>GYPGQV-NH₂</td>
<td>H-6346</td>
</tr>
</tbody>
</table>
PAR activation. This has been demonstrated for glycoprotein lb (gp1b) on human platelets. Inhibition of thrombin binding to gp1b resulted in a decrease in PAR-1 hydrolysis. The underlying mechanism might be similar to the one suggested for PAR-3 and PAR-4 on mouse platelets, in that gp1b concentrates thrombin at the cell surface and thereby facilitates PAR-1 hydrolysis.

Apart from thrombin and trypsin, additional proteases cleave and activate members of the PAR family. Among them are leukocyte proteases (such as cathepsin G and proteinase-3), the mast cell protease tryptase, in addition to enzyme complexes functioning in the coagulation cascade like TF-FVIIa-FXa and TF-FVIIa.

Some of the proteases may act as activating or inactivating enzymes depending on the targeted receptor. For example, cathepsin G is able to activate PAR-4 but disables PAR-1, PAR-2, and PAR-3 while proteinase-3 can activate PAR-2 but inactivates PAR-1. Interestingly, PARs can also be activated by non-mammalian enzymes. Activation by proteases from dust mites or Porphyromonas gingivalis, a major mediator of periodontitis, has been associated with the development of allergies and cardiovascular disorders, respectively.

Deactivation Mechanisms
PARs can couple to multiple signal transduction pathways and can therefore, regulate many cellular functions. Although cleavage results in receptors that are constitutively exposed to the tethered ligand sequences, signaling via PARs is transient. Considerable effort has been directed towards the investigation of signal termination mechanisms with a primary focus on human PAR-1 and PAR-2. Apart from the possible deactivation by cell surface proteases that cleave PARs at sites relevant for activity, signaling via PARs might also be terminated by desensitization mechanisms. These mechanisms may involve rapid phosphorylation of the receptors by G-protein receptor kinases (GRK) and/or second messenger kinases such as protein kinase C (PKC). Subsequent binding of β-arrestins to the phosphorylated PARs results in disruption of the association with heterotrimeric G-proteins and termination of the signal. In addition to receptor desensitization, responsiveness to agonists is also regulated by receptor endocytosis, which can be triggered by PAR activation. Internalization of both PAR-1 and PAR-2 proceed via a clathrin-mediated process. In contrast to PAR-1, endocytosis of PAR-2 requires β-arrestins, which act as adaptor proteins that link GRK-phosphorylated receptors to clathrin. Adaptor proteins, such as AP2, may participate in endocytosis of PAR-1.

Since activation of PARs is an irreversible mechanism, sustained signaling via these receptors requires either de novo synthesis or mobilization of intracellularly stored receptor molecules. Resensitization of responses to PAR-1 activators in endothelial cells and fibroblasts are for example due to the repopulation of the cell membrane with receptors derived from prominent Golgi stores. In megakaryoblasts, on the other hand, resensitization is achieved by the synthesis of new receptors. Platelets, which only need to respond once to PAR activators, lack both of these resensitization mechanisms.

Pathophysiological Functions

Cardiovascular disease
Thrombin and its receptors play a pivotal role in blood coagulation and thrombus formation. Inappropriate aggregation of platelets contributes to occlusive vascular disorders such as stroke, angina, and myocardial infarction. For these reasons PAR-1 antagonists have gained interest as potential anti-thrombotic agents. In a cynomolgus monkey arterial injury model, the heterocycle-based peptide-mimetic PAR-1 antagonist RWJ-58259 was shown to exhibit considerable anti-thrombotic activity despite the fact that the platelets from these animals also express PAR-4. A recent study demonstrated that PAR-1 and PAR-4 on human platelets formed heterodimers. A combination of bivalirudin (a specific,
PAR-Activating Peptides

reversible and direct thrombin inhibitor) and a novel PAR-4 cell-penetrating peptide (pepducin) antagonist effectively inhibited aggregation of human platelets to high concentrations of thrombin and offered superior protection against thrombosis in guinea pigs versus single-receptor inhibition. These results suggest that targeting the PAR-1/PAR-4 complex on the outside and/or inside cell surface may represent a novel therapeutic opportunity to prevent arterial thrombosis. Since thrombin is also involved in the recurrent narrowing of blood vessels after vascular injury, PAR antagonists may also be of interest in decreasing the risk of restenosis following cardiac/vascular surgery and angioplasty.

Inflammation
PARs play an important role in inflammation and immune responses. Following tissue injuries, thrombin mediates several inflammatory-associated effects on the vascular endothelium via activation of PAR-1, among them the synthesis and release of various cytokines and growth factors and the induction of adhesion molecule expression, PAR-2, which can be activated by trypsin and mast cell tryptase, has been implicated in pathological conditions involving inflammatory processes including arthritis, asthma, and colitis. In an animal monoarthritis model of chronic inflammation, joint swelling was substantially inhibited in PAR-2-deficient mice compared with wild-type mice. Joint inflammation induced by intra-articular carrageenan/kaolin (C/K) injection could be attenuated by antagonizing PAR-2 activation. These results pointed at PAR-2 as a novel target for the future treatment of arthritis.

In a mouse model of colitis, 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis was dose-dependently reduced by the administration of the mouse PAR-2 tethered ligand SLIGRLamide, whereas the scrambled control peptide, LSIGRLamide, was ineffective. In another study, however, a pro-inflammatory role has been attributed to activation of PAR-2 in the mouse colon. A similar controversial situation concerning the pro- or anti-inflammatory effects of PAR-2 activation has been observed as well within the airways. PAR-2 is also localized on sensory neurons where it plays a role in inflammatory hyperalgesia. Thermal hyperalgesia depends on PAR-2–induced sensitization of the transient receptor potential vanilloid receptor 1 (TRPV1) which is gated by capsaicin, protons and noxious heat. The underlying mechanism involves activation of protein kinase Cε (PKCe) and protein kinase A (PKA).

Cancer
Increasing evidence suggests that PARs may play a role in invasive and metastatic processes of various cancers. Recent studies have demonstrated that PAR-1 mRNA is expressed in human colon cancer cell lines but not in normal colonic epithelial cells. Activation of PAR-1 in the human colon cancer cell line HT-29 by thrombin or by tethered ligand sequences resulted in cell proliferation. The signaling cascade downstream of PAR-1 involved a matrix metalloproteinase-dependent release of transforming growth factor-α (TGF-α), transactivation of the epidermal growth factor (EGF) receptor and subsequent activation of extracellular signal-related protein kinase 1/2 (ERK1/2).

PAR-1 was also found to be significantly overexpressed in atypical nevi and melanomas in comparison with common melanocytic nevi.

Another study demonstrated that preincubation of human melanoma cells with thrombin resulted in enhanced chemotactic migration. The process not only required the activation of PAR-1, but was also dependent on PAR-2 since desensitization with PAR-2 agonists abolished the effect. Consistent with this finding, a combination of PAR-2 and PAR-1 agonists (SLIGRL and TFLLRNPD) evoked enhanced cell motility whereas PAR-1 or PAR-2 agonists alone did not stimulate migration. Similarly, activation of PAR-1 and PAR-2 also enhanced chemokinesis in prostate cancer cells. Interestingly, in a panel of prostate cancer cell lines, increased PAR-1 expression was demonstrated in those cell lines derived from bone metastases.

PAR-1 is preferentially expressed in highly
metastatic human breast carcinoma cell lines and breast carcinoma biopsy specimens. Its expression correlated with tumor progression.

Recently, it was demonstrated that MDA-MB-231, a highly invasive breast cancer cell line, expressed very high levels of functional PAR-1, PAR-2 and PAR-4 whereas minimally invasive MCF7 cells had considerably lower levels of these receptors. Although PAR-2 and PAR-4 could act as chemotactic receptors in both MDA-MB-231 and MCF7 breast cancer cells, activation of PAR-1 with thrombin or a PAR-1 agonist unexpectedly inhibited migration and invasiveness of MDA-MB-231 cells when applied as a concentration gradient in the direction of the cell movement.

In a different study PAR-1 was shown to be a matrix metalloprotease-1 (MMP-1) receptor that promotes invasion and tumorigenesis of breast cancer cells.

Conclusions
PARs with their unique activation mechanism play a key role in hemostasis but are also involved in pathophysiological processes such as arterial thrombosis, inflammation, and tumor progression. The underlying mechanisms involving a variety of proteases and signaling components are only partly understood.

PAR agonists have proven valuable tools for specifically addressing the role of the individual receptors and have significantly improved our understanding of this receptor family. Future work, in particular the use of receptor knock-out animals, will be needed to gain a deeper insight into the complex network of PAR signaling.
REFERENCES

U.B. Rasmussen et al.

T.K. Vu et al.

S. Nystedt et al.

A.J. Connolly et al.
Role of the thrombin receptor in development and evidence for a second receptor. Nature 381, 516-519 (1996)

H. Ishihara et al.
Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386, 502-506 (1997)

S. Even-Ram et al.

M.L. Kahn et al.

W.F. Xu et al.

M. Nakanishi-Matsui et al.
PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404, 609-613 (2000)

E. De Candia et al.
Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of PAR-1 on intact platelets. J. Biol. Chem. 276, 4692-4698 (2001)

S.R. Macfarlane et al.

L. Kamath et al.
Signaling from protease-activated receptor-1 inhibits migration and invasion of breast cancer cells. Cancer Res. 61, 5933-5940 (2001)

N. Cenac et al.

C.H. Chay et al.
A functional thrombin receptor (PAR1) is expressed on bone-derived prostate cancer cell lines. Urology 60, 760-765 (2002)

M.D. Hollenberg and S.J. Compton

S.R. Coughlin and E. Camerer

D. Darmoul et al.

M.R. Ferrell et al.

M.R. Darmoul

B.E. Maryanoff et al.
S. Amadesi et al.
Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia.

D. Darmoul et al.
Protease-activated receptor 2 in colon cancer: trypsin-induced MAPK phosphorylation and cell proliferation are mediated by epidermal growth factor receptor transactivation.

Non-Hallucinated Text:

A. Boire et al.
PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells.
Cell 120, 303-313 (2005)

N. Vergnolle
Protease-activated receptors and inflammatory hyperalgesia.

S. Amadesi et al.
Protease-activated receptor 2 sensitizes TRPV1 by protein kinase C(epsilon)- and A-dependent mechanisms in rats and mice.

E.B. Kelso et al.
Therapeutic promise of proteinase-activated receptor-2 antagonism in joint inflammation.

A.J. Leger et al.
Blocking the protease-activated receptor 1-4 heterodimer in platelet-mediated thrombosis.
PAR ACTIVATING PEPTIDES

We also offer hirudin fragments and thrombin inhibitors such as bivalirudin (H-6668) and lepirudin (H-6618). Both peptides are also available as active pharmaceutical ingredients. For more information on these products, please go to our homepage at www.bachem.com
PAR-1 PEPTIDES (TRAP PEPTIDES)

PAR-1 (1-6) (mouse, rat)
H-6416
SFFLRN

(Phe₁,Ser²,Tyr⁶)-PAR-1 (1-6) amide (human)
H-6286
FSLLRY-NH₂

H-Thr-Phe-Leu-Leu-Arg-NH₂
H-5848
TFLLR-NH₂

TRAP-5
H-1408
SFLLR

TRAP-5 amide
H-2938
SFLLR-NH₂

TRAP-6 ammonium acetate salt
H-7764
SFLLRN

TRAP-6 trifluoroacetate salt
H-8365
SFLLRN

TRAP-6 amide
H-2936
SFLLRN-NH₂

PAR-2 PEPTIDES

H-Leu-Ser-Ile-Gly-Lys-Val-NH₂
H-6428
LSIGKV-NH₂

PAR-2 (1-6) (human)
H-5042
SLIGKV

PAR-2 (1-6) (mouse, rat)
H-3586
SLIGRL

PAR-2 (1-6) amide (human)
H-4624
SLIGKV-NH₂

PAR-2 (6-1) amide (human)
H-5882
VKGILS-NH₂

PAR-2 (1-6) amide (mouse, rat)
H-5078
SLIGRL-NH₂

(2-Furoyl)-PAR-2 (2-6)-Orn amide (mouse, rat)
H-6246
(2-Furoyl)-LIGRL-Orn-NH₂

PAR-2 (6-1) amide (mouse, rat)
H-6508
LRGILS-NH₂
PAR-3 Peptides

<table>
<thead>
<tr>
<th>Peptide Name</th>
<th>Human</th>
<th>Mouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR-3 (1-6)</td>
<td>H-4452</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TFRGAP</td>
<td></td>
</tr>
<tr>
<td>PAR-3 (1-6) amide (human)</td>
<td>H-6278</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TFRGAP-NH₂</td>
<td></td>
</tr>
<tr>
<td>PAR-3 (1-6) amide (mouse)</td>
<td>H-6282</td>
<td>SFNGGP-NH₂</td>
</tr>
</tbody>
</table>

PAR-4 Peptides

<table>
<thead>
<tr>
<th>Peptide Name</th>
<th>Human</th>
<th>Mouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR-4 (1-6)</td>
<td>H-4348</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GYPGQV</td>
<td></td>
</tr>
<tr>
<td>PAR-4 (1-6) (mouse)</td>
<td>H-4404</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GYPGKF</td>
<td></td>
</tr>
<tr>
<td>(Ala¹)-PAR-4 (1-6) (mouse)</td>
<td>H-6134</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AYPGKF</td>
<td></td>
</tr>
<tr>
<td>PAR-4 (1-6) amide (human)</td>
<td>H-6346</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GYPGQV-NH₂</td>
<td></td>
</tr>
<tr>
<td>PAR-4 (1-6) amide (mouse)</td>
<td>H-6054</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GYPGKF-NH₂</td>
<td></td>
</tr>
<tr>
<td>(Ala¹)-PAR-4 (1-6) amide (mouse)</td>
<td>H-6046</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AYPGKF-NH₂</td>
<td></td>
</tr>
</tbody>
</table>

Related Peptides

<table>
<thead>
<tr>
<th>Peptide Name</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boc-D-Phe-Pro-Arg-OH</td>
<td>N-1020</td>
</tr>
<tr>
<td></td>
<td>Boc-fPR</td>
</tr>
<tr>
<td>Thrombin Receptor Antagonist</td>
<td>H-2514</td>
</tr>
<tr>
<td></td>
<td>MSRPACPNDKYE</td>
</tr>
<tr>
<td>H-Phe-Pro-Arg-OH</td>
<td>H-3916</td>
</tr>
<tr>
<td></td>
<td>FPR</td>
</tr>
<tr>
<td>uPAR (84-95) (human)</td>
<td>H-6316</td>
</tr>
<tr>
<td></td>
<td>AVTYSRSRYLEC</td>
</tr>
</tbody>
</table>
Coloured scanning electron micrograph (SEM) of a blood clot. Red blood cells, also known as erythrocytes (red), are seen enmeshed in filaments of fibrin protein (purple/pink). Blood clotting is the solidification of blood that rapidly occurs when blood vessels are damaged, limiting blood loss. Blood vessel damage activates blood cells called platelets, which in turn help to stimulate the formation of fibrin filaments at the site of injury. These filaments enmesh platelets and red and white blood cells, contracting around them to form a solid clot. Inappropriate clotting is a major cause of strokes and heart attacks. Magnification: x3800 at 6x7cm size.

KEYSTONE/SCIENCE PHOTO LIBRARY/
SUSUMU NISHINAGA